skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rawlinson, Taylor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The emergence of engineered living materials (ELMs) has led to the development of functional composites by combining living microorganisms with nonliving components, particularly hydrogels. Hydrogels, which mimic the extracellular matrix, support microbial growth by providing essential nutrients and promoting cell adhesion, making them ideal for ELM production. However, hydrogel-based materials often face challenges in three-dimensional printing due to poor structural integrity and limited printability, frequently requiring additional processes, precise control, and/or material modifications to enhance their printing performance. This study focuses on developing a microorganism-laden gelatin microgel and gelatin solution-based composite bioink for self-supported printing of ELMs, enhanced via microbial-induced calcium carbonate precipitation. Gelatin microgels are utilized as rheology modifiers, enabling the yield-stress fluid behavior of the bioink for improved printability and postprinting shape retention, while transglutaminase enzymatically cross-links printed structures completely, resulting in good printability. Furthermore, Sporosarcina pasteurii in the bioink enables calcium carbonate deposition during postprinting culturing, forming robust, biomineralized structures. Fabricated samples are found to have significant successful mineral deposition with over 50 wt% calcium carbonate content, and they exhibit compressive strengths of up to 1.4 MPa. This approach offers a cost-effective, energy-efficient method for creating high-strength, biocompatible biocomposites with potential applications such as bone tissue engineering, coral restoration, and sustainable building development. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Tropical cyclones and other extreme coastal storms cause widespread interruption and damage to meteorological and hydrological measurement stations exactly when researchers need them most. There is a longstanding need to collect collocated and synchronized measurements in areas where storms severely damage civil/coastal infrastructure. To fill this observational gap, researchers led by author Masters developed a state-of-the-art monitoring station called a “Sentinel.” Sentinels are intended for temporary installation on the beach between the mean tidal datum and the sand dunes and are engineered to operate in and measure extreme wind, storm surge, wave, and hazardous water quality conditions. They are envisioned as a shared-use resource—a hardened IoT (Internet of Things) platform set up in the right place at the right time to study wind and wave loads, coastal erosion and morphology changes, water quality, and other processes during extreme coastal storms. 
    more » « less